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TECHNICAL NOTE NO. 961 

THE »LIMITINÖ LINE" IN MIXED SUBSONIC AND 

SUPERSONIC ELOW OE COMPRESSIBLE FLUIDS 

By Hsue—ehen Tsien 

It is well known that the vorticity for any fluid element 
is constant if the fluid is non—viscous and the change of 
state of the fluid is isentropic.  When a solid body is placed 
in a uniform stream, the flow far ahead of the body is irrota— 
tional.  Then if the flow is further assumed to be isentropic, 
the vorticity will be zero over the whole field of flow, "In 
other words, the flow is irrotational.  Eor such flow ovor a 
solid body, it is shown by Theodorsen (referonce 1) that the 
solid body experiences no resistance.  If the fluid has a 
small viscosity, its effect will be limited in the boundary 
layer over the solid body and the b°dy will have a drag due 
to the skin friction.  This type of essentially isentropic ir— 
rotational flow^ is generally observed for a streamlined body " 
placed in a uniform stream, if the velocity of the stream is 
kept below' the so—called »critical speed.» 

At the critical speed or rather at a certain value of the 
ratio of the velocity of the undisturbed flow and the corre- 
sponding velocity of sound, shock waves appear.  This phenome- 
non is called the "compressibility burble."  Along a shock 
wave, the change of state of the fluid is no longer isentropic, 
although still adiabatic.  This results in an increase in en- 
tropy of the fluid and generally Introduces vorticity'In an    ' 
originally irrotational flow.  The increase in entropy of the 
fluid is, of course, the consequence of changing part of the 
mechanical energy into heat energy.  In other words, the part 
of fluid affected by the shock wavo has a reduced mochanical 
enorgy,  Therefore, with tho appearanco of shock waves, the 
wake of the streamline body is very much widened, and tho 
drag incroasos drastically.  Furthermore, the accompanying 

^.     change in the pressure distribution over the body changes the 
aerodynamic moment acting on it and in the case of an airfoil 
decreases the lift force, 

SESTRIOTED 
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~^' All these consequences of the breakdown of isentropic 
irrotational flow are generally undesirable in applied aero- 
dynamics.  Its occurrence should be delayed as mUch as possi— 

-       ble by modifying the shape or contour of the bod^y.  However, 
such endeavor will be very much facilitated if the cause or 
the criterion for the breakdown can be found fir^st, 

« 

CRITERION EOR THE BREAKDOWN 03* 

ISENTROPIC IRROTATIONAL FLOW 

Taylor and Sharman (reference 2) calculated the succes- 
sive approximations to the flow around an airfoil by means of 
an electrolytic tank.  They found that when the maximum veloc- 
ity in the flow reaches the local velocity of sound, the con- 
vergence of the successive steps seems to break down.  This 
fact led to the identification of critical speed or critical 
Mach number with the^ Mach number of the undisturbed flow for 
which the local velocity at some point reaches the local vel- 
ocity of sound.  However, there is no mathematical proof for 
tho coincidence of the critical Mach number so defined and 
the breakdown of isentropic irrotational flow.  ^Furthermore, 
such a definition for critical Mach number implies that a 
transition from a velocity loss than that of sound, or sub- 
sonic velocity, to a velocity greater than that of sound, or 
supersonic velocity, does not occur in isentropic irrotational 
flow.  On the other hand, Taylor (reference 3) and others 
found solutions for which such a transition occurs,  Further— 

.       more, Binnie and Hooker (reference 4) have shown that at 
least for the case of spiral flow the method of successive 
approximation is a convergent one even for supersonic vel— 

f ocities.  With these facts in mind, It may be concluded that 
the identification of critical speed with local supersonic 
velocity cannot be correct. 

Taylor«s investigation on the spiral flow (reference 3) 
indicates that there is a line in the flow field where the 

4 maximum velocity is reached and beyond which the flow cannot 
continue.  Tollmien -in a subsequent paper (reference 5) called 

|- such lines limiting lines. The velocity at the limiting line 
is never subsonic. However, the true characteristics of such 
limiting lines and their significance were not investigated 
by Tollmien at that time. Recently Ringleb (reference 6) ob- 
tained another particular solution of isentropic irrotational 
flow in which the maximum velocity reached is approximately 
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twice the local sound velocity.  Jor this flow also a limit- 
ing lino appeared beyond which the flow cannot continue, 
furthermore, he found the singular character of the limiting 
line, that is, infinite acceleration and infinite pressure 
gradient.  Ton Zarman (reference 7, particularly pp. 351—356) 
demonstrated this fact for the general two-dimensional flow* 
He also suggested that the limiting line is the envelope of 
the Mach waves (fig. 1) and thus can occur only in a super- 
sonic region,.  He also took its appearance as the criterion 
for breakdown of isentropic irrotational flow.  This general 
two—dimensional theory was established later by both EIngleb 
(reference 8) and Tollmien (reference 9).  Tollmien corrected 
some mistakes in Eingleb's paper and, in addition, showed 
that the flow definitely cannot continue beyond the limiting 
line.  The later fact introduced a "forbidden region" in the 
flow bounded by the limiting line.  This physical absurdity 
can be avoided only by relaxing the condition of irrotation— 
ality.  But, as stated previously, for non—viscous fluids^ 
the transition from a flow without vorticity to that with 
vorticity can be accomplished only by shock waves, which at 
the same time also cause an increase in the entropy. 

IJ.OW, IT; musT« De prove«?, unai; xne singular oenavior oi linni- 
ing lines is general and not limited to^ two—dimensional flow. 
This is the purpose of the present paper.  first the property" 
of limiting line in axially symmetric flow will be investigate 
in detail.  Then the goneral three—dimensional problem will be 
sketched.  These investigations confirm the results "of Eingleb 
Von Karman, and Tollmien for these more goneral cases. 

Therofore, by considering only the .steady flow of non— 
viscous, fluids, the criterion for breakdown of isentropic 
irrotational flow is the appearance of a limiting line,  3"or 
the actual motion of a solid body, however, the flow is neither 
steady nor non—viscous.  Small disturbances always occur and 
almost all real fluids have appreciable viscosity.  The small 
disturbances in the flow introduce the question of stability, 

4      In other words,, the solution found for isentropic irrotational 
flow may be unstable even before the appearance of the limit- 
ing line, and tends to transform Itself into a rotational flow 

I      involving shock waves at the slightest disturbance.  If this 
is the case, the criterion concerns not the limiting lino^ but 
the stability limit.  This pro'blem has yet to be solved. 

*£=# 



NACA TN Ho, 961 4 

The effect of viscosity will be limited to the "boundary- 
layer if the pressure along the surface in the flow direction 
never incroases too rapidly,  Then outside tho "boundary layer 
the flow is isehtropic and irrotational.  If the gradient of 
pressure is too large, the "boundary layer will separate from 
tho surface.  However, at low velocities such separation only 
widens the wake of the body and changes the pressure distri- 
bution ovor the body.  But if the boundary layer separates 
at a point where the velocity outside the boundary layer is 
supersonic, additional effects may appear,  The flow outside 
the boundary layer in this case can be regarded approximately 
as that of a solid body not of the original contour but of a 
new contour including the "dead water" region created by the 
separation.  It is then immediately clear that the ideal 
isontropic irrotational flow around this new contour may havo 
a limiting line.  Hence, the actual flow then must involve 
shock waves.  In other words, the separation of the boundary- 
layer in tho supersonic region may induce a shock wave and 
thus extend its influence far beyond the region of separation, 
Furthermore, the steep adverse pressure gradient across a 
shock wave may accentuate the separation,  This interaction *- 
bctween the separation and the shock wave is frequently ob- 
served in experiments. 

The above considerations indicate the possibility of 
the breakdown of isentropic irrotational flow outside the 
boundary layer even before the appearance of the limiting 
line.  Therefore, the Mach number of the undisturbed flow 
at which the limiting line appears may be called the "upper 
critical Mach number,"  On the other hand, since shock waves 
can occur only in supersonic flow, the Mach numbor of the un- 
disturbed flow at which tho local velocity reachos the veloc- 
ity of sound may be called the "lower critical Mach number,-" 
The actual critical Mach number for the appearance of shock 
waves and the compressibility burble must lie between these 
two limits.  By carefully designing the contour of the body   \ 
to avoid the crowding together of Mach waves to form an enve—  \ 
lope and to eliminate adverse pressure gradients along the     \ 
surface of the body, the compressibility burble can be delayed, / 

AXIALLY SYMMETEIC FLOW 

The solution of the exact differential equations for an 
axially symmetric isentropic irrotational flow was first given 
by Frankle (reference 10),  The method was developed independ- 
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ently "by Ferrari (reference 11).  Their method applies par- 
ticularly to the case of supersonic flow over a "body of 
revolution with pointed nose.  In this case, the flow at 
the nose can "be approximated by the well-rknown' solution 
for a cone,  From this solution, the differential equation 
is solved step by step, using the net of characteristics 
which are real for supersonic velocities.  In the following 
investigation, the chief concern is not the solution Of the 
partial differential equation but rather the occurrence and 
the properties of the limiting line'in an isentropic irrota— 
tional flow.  The general plan of attack is that of Tollmien 
(reference 9).  However, here the calculation is based on 
the Legendre transformation of velocity potential instead of 
the stream function. 

If  q.  is the magnitude of the velocity,  a  the corre- 
sponding velocity of sound assuming an isentropic procesjj, 
p  the pressure, and  p  the density of fluid, the Bernoulli 
equation gives 

J. 

(1) 

3     , 2v— 1 
•Y —1  Q "  ~ 

1 - 2  aö5   V    2  a«/ 

i-c-^ir-C"2?*)'*1 
(3) 

2  a 

In those equations, the subscript  o  denotes quantities 
corresponding to  q. = 0,  and  *Y  is the ratio of specific 
heats of the fluid.  Let the axis of symmetry be the x—axis, 
the distance normal to x— axis be denoted "by  y,  and the 
velocity components, along these two directions be denoted 
by  u and v,  respectively (fig. 2)#  ine x—y plane Is, "• 
therefore, a meridian plane.  Then the Jcinematical relations 
of the flow are given by the vorticity equation 

vx _ Uy « 0* (4) 

•Throughout this paper, partial derivatives are denoted 

by subscripts.  Thus  vx s .^-. , Uy s £-. 
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and the continuity equation 

£(y£u) + £(y£')-° <B) 
P0 '   oy ^ Po 

Equations (l) to (5), together with the relation  qs=us+vs, 
specify the flow completely. 

To simplify the problem, a-velocity potential <p  defined 
as follows is introduced: 

u - cpxt   v = (py (6) 
t 

Then equation (4) is identically satisfied and equation (5), 
together with equations (l) and (2), gives the equation'for tp. 

The characteristics of this differential equation, tö "be 
called the characteristics in the physical plane, are given 
"by  g (xt y) = 0,  where  g (x, y)  is determined by the 
following equation 

It can "be easily seen from this equation that  g  is real 
only when  q > a.  Therefore, the characteristics are real 
only in supersonic regions of the flow. 

The meaning of characteristics in the physical plane is 
immediately clear if one calculates the relation between the 
slope of a characteristic and the slope of a stream line in 
the meridian or x—y plane.  By the definition of the function 
g(x,y),  the value of  g  is zero, or constant,- along a char- 
acteristic.  Therefore, by writing a quantity evaluated at a 
certain constant value of a parameter with that parameter as 
a subscript, the slope of the characteristic in the physical 
plane is 
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(it) =_!f <•, 
VdX/g gy 

Along a streamline, the stream function  ^ defined by 
following equations is constant: 

\1/ = y JL u ,    *_ • « 7 -E- v       (10) 
7    Po        X      P0 

Therefore, the slope of a streamline is 

V4x/\|f  u 

Equations (8), (9), and (ll) give 

UV   A 

1 " as 

-*i a 
where  ß  is the Mach angle given "by  ß = sin  —.  Therefore, 

equation (12) shows that the characteristics in the physical 
a      plane are inclined to the streamlines by an angle equal to 

the Mach angie.  Such lines are the wave fronts of infinites- 
imal disturbances and are called Mach waves.  In other words, 

,      characteristics in physical planes are the Mach waves in 
that plane,  There are two families of Mach waves inclined 
symmetrically with respect to each streamline. 

If to each pair of values of  u and v,  there is j&nja 
pair of values of • x, y,  then  x and y  can ho considered 

,*      as functions of  u, v.  la other words, instead of taking 
x and y  as independent variables  u, v  can be used as in- 
dependent variables.  The plane with  u and v  as coordinates 

w      is called the "hodograph plane,"  An equation in the hodograph 
plane corresponding to equation (?) can bo obtained by means 
of Legendre's transformation.  By writing 
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X = ui + vy — tp (13) 

it is soon thr.t 

xu = *,   xv = y (14) 

Then, equation (7) can "be written as 

(ll3 x    + 27i x 
VV       a    UV 

V   a»/  Uu  Xv L uu 
xvv  ^UT J 

Ihe characteristics of equation (15) are given by  f(u,v) = 0 
where  f  is the solution of the following differential equa- 
tion 

v   "uv /  u.   V 

Equation (3.6) shows that the characteristics in the hodograph 
plane depend upon the values of the derivatives of  X  which 
must be obtained from equation (15),  In other words, the 
characteristics in the hodograph plane change with the flow 
and arc not a constant set of curves as are those in two- 
dimensional problems, 

To obtain the relation between the characteristics in 
the physical plane and those in the hodograph plane, it is 
noticed that equation (9) can be rewritten as 

(dy)g j (dx)g = - gx ; gy        •  (17) 
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Then equation (8) is equivalent to 

£_*•) (äy)g=+ , ar {47)i (te)<+ (l-z|) (dx)^. o   ue> 

However, in general, equation (14) gives the following 
relation "between the differentials of  x and y  and those 
of  u and vj 

dx «a v   du + Y   dv 
^uu     "UT 

du + v   dv 
(19) 

dy = X^ du + v^ v 

By  means   of  these   relations,   equation   (18)   can   he   transformed 
into   an aquation   for     (du)        and     (dv)   .      This   transformed 

equation     can  be   simplified  by using  equation   (15).      She   final 
relation   is 

(w^v§'St^}(tal 2 

g 

- 3 <?-£ *») <4^   <**>, +{(>-£>± xTT>^)«']- o 
(80) 

Therefore, if the first factor of equation (20) is not zero, 
the variations  (du)_  and  (dv)   along a characteristic in & g 
physical piano must satisfy the relation 

r/i^^N+JL "\ <du)/~2 p2 - JL  v     "\  (du)     (dv) 
g 

(*(!_ If) +JLX     }(dv) 
iA »a/       vw   *vvj 

2 
(21) 
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This is the sane relation for the variations  (du)f  and 
(dv)»  along a characteristic in the hodograph plane as can 
"be seen from equation (16) and the following relation ob- 
tained from the definition of  f ...._•' 

(dv)f : (du)f - - fu * fv (225 

The transformed characteristics of the physical plane and 
the characteristics of the hodograph plane themselves satisfy 
then the same first order differential equation.  Therefore, 
these two types of curves are the same.  In other words, the 
characteristics of the hodograph plane are the representation 
of Mach waves in the  u—v plane» , 

THE LIMITING- LINE 

Equation (20) shows that if 

*uu *vv "* *TIV 
= ^ 

then the transformed differential equation for the character- 
istics of the physical plane, or Mach waves, is satisfied, 
Thorefore, if there is a line in the hodograph plane  along 
which the values of the derivatives of  X  are such that 
equation (23) is true, then this line when transferred to 
the physical plane will have its slope equal to that of one 
family of Mach waves.  Such lines are called the limiting 
hodograph in  u—v  plane and the limiting line in physical 
plane.  Since Mach waves occur only in the supersonic regions 
it is then evident that the limiting line must appear in 
these regions.  The significance of the adjective "limiting" 
will be made clear as other properties of such lines are 
investigated, 

Now the question arises: Can the limiting hodograph 
be a characteristic in  u—v  plane?  Along a limiting hodo- 
graph, equation (23) gives 

/dv \ _ __ ^uuu ^77 ^uv ^uuv   \xv.  \ivv      / p v 

i     Xuuv X.vv — 2 Xuv Xu,vv + *uu 'Wvv 
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where   the   subscript     1     denotes  the  value   along a   limiting 
hodograph.     Now  the   general differential   equation  for    XA 
equation   (15),    is   true   for   the  whole     u— v     plane*    there- 
fore;   the  equation   is   still   true   by  differentiating   it   with 
respect   to     u     and     v.      Ihe   results   can  be   simplified   by 
using   equation   (15)   itself   and   equation   (23),      5?hen   at   the 
limiting  hodograph, 

(1~'Zs)+x"  *••! Xuuu * 2 uyi 
„a" X, 

WUT "uU7 + [(-A 
+ rr- Xuu vuvv (V+l)  JL  Xvv-2 ~~ Xuv+ (Y~l)  --s 

fir £t 
^ixv   (25s.) 

V       a2/    Xv     •J *uuv+S   [£3    1£  ;uv ^-+[(l-fe) 

tH *v VT ft-1)  -~  Xvv« 2 JL  Xuv+ (Y + i) _J-  Xuu     (25b) 

Equations   (24),    (25a),   and   (25b)   are   the   only   available 
equations   involving no  higher  derivative   than   the   third.      On 
the   othor   hand,   the   slope   of   a   characteristic   in  the   hodo- 
graph  plane   can   be   calculated   by   equation   (22), 

<sa •ja (26) 

This equation together with equation (16) gives 

ft - i) • t*~) ©: 

£*»} £)/{(i-5) X„„l-0 (27) Xv "Wj 

Therefore, if the limiting hodograph is a characteristic, then 
(ÄXA   must satisfy equation (27).  Hovevor  a simple calcula— 
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tion shows that it is not even possible to obtain a relation 

between (~  ]   and other quantities not involving the third— 

order derivatives of  X.  Hence,  ( &X  )  does not satisfy WA 
equation (27).  In other words, the limiting hodograph is 
not a characteristic.  Transferred to the physical plane, 
this means that the limiting line is not a Mach wave.  But 
as shown in previous paragraphs, the limiting line is .every- 
where tangent to one family of Mach waves,  Consequently, the 
limiting line must be the envelope of a family of Mach waves, 
This property of the limiting line can be taken as its physical 
definition, 

LIMITING HODOGRAPH AND THE STREAMLINES 

At the limiting hodograph both equations (15) and (23) 
hold.  By eliminating one of the second—order derivatives, 
say X  ,  the following relation is obtained 

si ±   A! _. i 
(Xrv)l (Xuv)i (28) 

i-3! 
a 

The sign before the radical in equation (28) can be either 
positive or negative, but not both. This relation will be 
used presently to show that the streamlines and one family 
of characteristics are tangent in the u—v plane. 

From equation (10), the differential of the stream 
function can be calculated as 

dty = - y -£-  T dx + y -£- u dy (29) 
Po P0 

In this equation,  y  can be replaced by  Xv  according to 
equation (14) and the differentials  dx  and . dy  replaced 
by the differential  du  and  dv  according to equation (19) 
Then — 
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d^ =  \ f~ [(-  v Xuu +   u Xuv)  du+f~ v  Xuv+ u Xvv)dvJ (3 0) 

Along  a  streamline,     d^  =   Oj   therefore  the   slope   of   the   stream- 
'   line   in   the  hodograph plane   is   given  by 

Vdu/ty       _ v  x^ +  u x 
TT 

At   the   limiting  hodograph,   equation  (23)   holds;   therefore, 
equation   (31)   together  with   equation   (28)   givea 

u3 
1  - -TS (*£\      = - (hn)   = _ 

W* i       Wv/t    us - 72 _ ! 
' a3      ./   a3 

(32) 

where the sign before the radical oan be either negative or 
positive corresponding to the sign in equation (28), 

On the other hand, the slope of the characteristics in 
the hodograph plane is determined by equation (27).  By 

(du), 

aid of equation (15), 

solving for ( -2— \   and simplifying the result  with the 

(33) 

C1-£>•£* vv , 

The sign before the radical is either positive or negative 
corresponding to the two families of characteristics.  By 
using the positive sign in conjunction with the positive sign 
in equation (28), and similarly for the negative sign, 

\du/f l  uv _ 
as + /2- i J  as 
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Equations (32) and (34) show that the streamlines and one 
family of characteristics are tangent to each other at the 
limiting hodograph.  This result is the same as that ob- 
tained for two—dimensional flow.  (See references 7, 8t and 
9.)  Those equations when compared with equation (12) for 
the slope of Mach waves in the physical plane yields the 
interesting result that the streamlines and one family of 
characteristics at the limiting hodograph are perpendicular 
to the corresponding Mach waves at the limiting line. 

Since 

c dv\      yu du/^     ^v 
(35) 

Equation (32) gives the following equation which holds at 
the limiting hodograph 

l-^VV^^^l <*T>l + (*-7i) <*v>;2~°  C36) ay a ^   a f 

This equation can be reduced to more familiar form "by intro- 
ducing the polar coordinates in the  u—v  plane: 

u = q cos 8,   v = q sin 6 

where  9  is the angle "between the velocity vector and  u— axis, 
Then equation (36) takes the form 

This can be regarded as the equivalent of equation (23) for 
defining the limiting hodograph. A similar relation exists 
for two-»dimensional flow.  (See references 7, 8, and 9.) 

Along a streamline, the ratio between  (dv)^  and 

(du)^  is givon by equation (31).  By substituting this 
ratio in oquation (19), the differential  (dx)^  and 
(dy)^  along a streamline is given as 
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u X  X  - X 
(dx)^ =  L ^U VV  • UV J  Uu)* 

- v X  + 11 x 
UY        VV 

r si 

- v Xuv + u x 

-\ 

>       (38) 

TV 

At the limiting line, equation (23) is satisfied, Then equa- 
tion (38) shows that at the limiting line, the streamline has 
a singularity.  Or, more plainly,  T^x)^ and  (dy)^.  at these 

points are infinitesimals of higher order than  (du)*  and 
(<iv)*,  By writing  &  for the distance measured along a 

streamline, equation (38) gives immediately 

(O 
—,     rr    X    +  U X v       UV    u   77 

* 

b X  - X s 
uu  w    uv 3 

(39) 

Similarly, 

**.\  ' 

v Xuu -, u Xuv 

x  x  -xs 

L uu vv   uv J 

(40) 

Therefore, at the limiting line, the acceleration along a 
streamline is infinitely large,  Furthermore, since the 
pressure gradient  (PS)O,  along a streamline is 

(Ps)^ = - P 4 *s - - P [u (us>* + v (T.y| (41) 

the pressure gradient at the limiting line is also infinitely 
large. 

\ \ 
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Such infinite acceleration and pressure gradient lead 
one to suspect that the fluid is thrown hack at the limiting 
line.  In othor words, the streamlines are doubled back at 
this line of singularity.  To investigate whether this is 
true, tho character of the relation y^    XyV — X^

3 - ° 

along a streamline has to he determined.  If the derivative 
of this expression along a streamline is not zero, then 
Xuu Xw — Xu.v

2  has only a simple zero at tho intersection 
of the limiting line and the streamline.  Consequently, the 
differentials  (dx)^ and  (dy)^ will change sign by passing 
through the limiting hodogr-aph in  u—v  plane along a stream- 
line,  Honoe, the streamlines will double back and form a 
cusp at the limiting line.  The derivative of  %uu *vv ~"XuvS 

along the streamline can be calculated with the aid of equa— 
tion (30) 

"A  (x     x     ~x2)l=x X  - 2 X  X   + X  X du   iiii  vv    UT ' ,    uuu   vv      uv  uuv    uu 

v Xuu -u X,lv 

uu  UVV 

— v X +u .X uv    vv 
{Xuuv *vv- 2 *uv Vv+ *uu Vv]    (42) 

The ezprossion on the right of equation (42) cannot be reduced 
to zero by the available relations, which consist of equation 

back at the limiting line. It will be shown later „iia,u „u..-i.c 
is no solution possible beyond the limiting line. Hence, the 
name limiting line, 

ENVELOPE OP CHARACTERISTICS Iff H0D0GRAPH PLANE AND 

LINES OP CONSTANT VELOCITY IN PHYSICAL PLANE 

Since the limiting line is the envelope of the Mach wares 
in the physical plane, i,t is interesting to see whether there 
is also an envelope for the characteristics in the hodograph 
plane.  The characteristics in the  u—v  plane are determined 
by equation ($6),  The envelope to them can be found by elim- 

inating (--J  between equation (26) and the following equation 
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which is obtained, by equating to zero the partial derivative 

of equation (26) with respect to  f~j ,     The result can he 

simplified by equation (15) f and then it "becomes simply 

2    S     S 2     3 2 
! „ JL+JL.  + ^-Z_  =  Ji-lf (44) 

a2 a4 a4 

This   is   satisfied   by   either 

a= 0 (45) 

or 
u    +  v     SB  a (46) 

The first condition, equation (45), when substituted into 
equation (26) gives 

fir") -— <4?>     • vWf,a=o    v 

which shows that the circle of maximum velocity correspond- 
ing to  a = 0t is the onvelope of the characteristics in hodor- 
graph piano.  The second condition, equation (46), is the 
spurious solution, sinco generally the characteristic at 
q = a  is not a tangent to the circle  q = a.  Hence  a «= 0 
is the only envelope, " 

Iho lines of constant velocity in the hodograph plane 
are simply circles.  Therefore 

<t 'dv\     u , 
^u) "- v <48> 

q 

By means of this relation and equation (19), the slope of the 
lines of constant velocity is given as 

a-""-'" \        (4.) «dx/^ 
v \a "  U *iii 
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This equation together with equation (30) gives the following 
interesting relation 

(*£\ i- (50) 
\dx/      /'dv'S 4     VduAj, 

In other words, a line of constant velocity in the physical 
plane is perpendicular to the streamline in the hodograph 
plane at the corresponding points, 

TH3 LOST SOLUTION 

Throughout the previous calculation, the possibility of 
using the Legendro transformation is assumed.  This requires 
that for each pair of values of  u,  v  there is one and 
only one pair of values of  x,  y.  However, it is not al- 
ways tyuo.  It is possible to have a number of points in 

and  v.  If 
solve 
0, 
ised by 
the 

ux vy - uy vx = ° <51) 

However, this is also the condition for a functional relation 
between  u  and  vj  for example,  v  can be expressed as a 
function of  u.  In other words,  u  and  v  are not independ- 
ent.  Hence if a solution is ••lost" or not included in the 
family of solutions allowing Legendre transformation, then for 
that solution, 

v = v(u) (5 2) 

It is seen that equation (51) is then identically statisfied. 

By eliminating  p  from the continuity equation, there 
is obtained 
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This equation can "be rewritten in the following form by using 
equation (5 2) 

f/\  US \  U7 dv *}     (V,  vs\ dv   UT"]     V   _   /-„v 

f1"3)-5r>*l(l"?)i:-5J''t"r- °   (64) 

The  vorticity equation,   equation   (4), can   be   expressed   as 

£; "* - V - c <"> 
From equations (54) and (55), it is possible to solve for 
ux  and  tL..  The result is 

I_£A_ siilz + (i-i^ /iiyiuy = -2ix    (sei) 
as/    as du   N   a3/ VLu' J      y du 

By differentiating the first of equation (56) with respect 
to  y,  the second with respoct to  x,  the following rela- 
tion is obtained by subtraction; 

2 

^u.+--0 (57) 
du2   *    y 

Therefore 

or 

dI = füO_=LjE (58) 

du       y 

f(y) - x 
y = 

dr 
du 

whero  f(y)  is an undetermined function of  y.  However, 
equation (55) shows that for lines of constant values of  u 
where  du = ux (dx)u + uy Uy)^ = 0, 
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a constant (59) A7\ 1 . 

u 

Henon, linos of constant values of  u  and  v  are straight 
lines,  This restriction reduces the function  f(y) in 
equation (58) to a numerical constant.  Put  f(y)= K, equa- 
tion (58) is then 

K - x 
7--2J- (50) 

du   

Therefore lines of constant value of  u and  v  are radial 
lines passing through the point  x » K,  Thus the lost solu- 
tion is nothing "but the well-known solution for the flow 
over a conical surface. 

From equation (59), it is seen that lines of constant 
velocity are perpendicular to the tangent of the  u—v  curve 
at the corresponding points.  By substituting the value of 

y  from, equation (57) into eq\iation (56a), a relation "between 

u  and  v  is obtained? 

v ils- (i - üvsrf +2 zz~~ (i—V o     <eD 
dus  \    a3Adu/     aS du   V   a2' 

This is the differential equation for determining the hodograph 
representing the flow over a cone.  Figure 3 shows the hodograph 
for a cone of 30° semivortex angle and with a velocity at the 
surface of cone equal to 0.35 c.  The maximum velocity is a  — 
that is, the value of  q  corresponding to  a = 0.  Figure 3 
is drawn from data given by Taylor and Maccoll (reference 12). 

It may well be mentioned here that the lost solution for 
the axially symmetric flow is not limited to supersonic veloc- 
ity as is the case for two—dimensional flow.  In fact, Taylor 
_„,. i_- -,-,  ,. ... tjjat for gniall forward velocity of the 
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their calculations (reference 12),  The dotted curves in the 
figure are the Mach waves,  The dotted straight lines are 
the "boundaries "between the supersonic and the subsonic regions, 
furthermore, spark photographs of a conical shell in actual 
flight taken "by Maccoll (reference 135 äo n0* indicate the 
presence of-shock waves in regions of flow where such transi- 
tion from supersonic to subsonic velocities is expected. 
Therefore, at least for this particular type of flow, a 
smooth transition through sonic velocity actually takes 
placo. 

CONTINUATION OF SOLUTION BEYOND THE LIMITING LINE 

Since it is shown In a previous paragraph that the 
streamlines are generally turned back at the limiting line, 
the question arises:  Is it possible to continue the solution 
beyond the limiting line?  Of course, there are two ways of 
continuing the solution:  The new solution is joined either 
smoothly to the given solution at the limiting line or with 
a discontinuity.  As shown before, the limiting line is the 
envolopo of one family of the Mach waves.  Then at every 
point of this line its direction differs from that of the 
streamline by an angle equal to the Mach angle.  But the 
Mach angle is not zero except at points where the velocity 
of fluid has reached the maximum velocity and the ratio 

- s 0,  Therefore, the limiting line generally does not 

coincide with the streamline, and the discontinuity at the 
junction of the solution at the limiting line cannot be that 
of a vortex sheet.  The only other type of discontinuity is 
the shock wave.  However, the angle between the limiting line 
and the flow direction is .equal to the Mach angle.  Then ac- 
cording to the result of the theory of shock waves, the dis- 
continuity across such a line vanishes. In   other words, 
there cannot be a discontinuity at the limiting line.  There- 
fore, It is impossible to join a new solution at the limit- 
ing line with a discontinuity. 

As to the second possibility of joining a new solution 
smoothly at the limiting line, it is seen that the flow beyond 
the limiting line must be irrotational and isentropic since 
tho limiting line cannot be a shock wave,  There are only two 
types of isentropic irrotational flow? namely, one that allows 
tho Legondre transformation, and one that does not, the "lost 
solution.»  Investigate the second alternative first.  If the 
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solution "beyond the limiting line "belongs to the so—called 
lost solution, then since the junction at the limiting line 
must "be smooth, the values of  u  and  v  at the limiting 
line must also satisfy equation (61),  But the slope 

—J   at the limiting line is given by equation (24).  The 

second derivative C—g)  will then involve the fourth 

order derivatives of  X,  Besides these expressions, the 
available relations are equations (15), (23), (25a), (25b), 
and three more equations obtained by differentiating equations 
(25) with respoct to  u and  v.  However, it is still impos- 

sible for  N-5 j  to satisfy an equation like equation (61) 

where no derivative of X  appears.  Hence, the limiting 
hodograph does not satisfy the equation for the lost solu- 
tion.  In other words, the lost solution cannot be used to 
continue the flow beyond the limiting line. 

The only remaining possibility is to continue the flow 
smoothly by another solution obtainable by a Legendre trans- 
formation.  Smooth continuation means that the values of  u, 
v,  and  p  must be the same at the junction, the limiting 
line«  Since shock waves do not appear, isentropic relations 
still hold.  The density  p  is determined by velocity only. 
The value of  u  and  v  are determined by the coordinates 
in the hodograph plane.  The position of the limiting line 
in the physical plane is determined by X ut X v.  Therefore, 

the problem can be stated as follows: At a certain given 
curve u(\), v(\) in the hodograph plane, the limiting 
hodograph, the values of Xu,  X7  are given;  X.  is the 

parameter along the gi-ven curve.  It is required to deter- 
mine a new solution of the differential equation (equation 
(15)) with these initial values.  First of all, it is seen 
that with the given data, the left—hand sides of the follow- 
ing equations are given: 

i (Xu) . Xuu AS • XUT g <62a) 
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Therefore 

- — X  + — (X ) 
uv  L  <U  ••  dX  v 

~/dv\a      dv d ,  .  du d ,  .1 ,/> 

(63a) 

-)  (eat) 

By substituting those values into equation (15), the second- 
degree terms reduce to 

*uu *vv   *uv   |_dX. d\ Ux, dx     •     am     »J   "/ Six 

£^f/e: 
(64) 

which is linear in  X^»  Therefore  Xg.v  can be uniquely 
determined by equation (15). In other words, with the given 
data, the second order derivatives of X at the given curve 
u(x), v(\) can be determined uniquely, in spite of the fact 
that the differential equation (15) is 
Friedrichs and Lewy (reference 
these circumstances, 

of second degree, 
have shown that under 
X within a region these circumstances, the function  X within a region  H 

(fig, 5) bounded by two characteristics and the given curve 
is uniquely determined except for an additional constant. 
Consequently there can bo only one solution corresponding t to 

solu- 
Consequently there can bo only vu.» «uxunx 
the given data at the limiting hodograph.  However, this 
tion is the very one which gives the reverse flow at limiting 
line.  Therefore, it is impossible to continue the solution 

j line oven by a Legendre transformation. 
 ,   , _ 
beyond the limiting 

Since all three alternatives fail to offer a way of con- 
tinuing the solution, the limiting line is truly an impossible 
boundary to cross.  In other words, tho region beyond the 
limiting line is a forbidden region.  This physical absurdity 
can be resolved only by the breakdown of isentropic irrota—" 
tional flow. 
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GENERAL THREE-DIMENSIONAL ?LOW 

Che methods used in previous sections for investigating 
the axially symmetric flow can be easily extended to the 
general three—dimensional case.  In the present section, this 
investigation will he sketched "briefly and the results indi- 
cated,, 

Let the three components of velocity along the three 
coordinate axes  x,  y,  and  z  be denoted by u,  V,  and 
w,  respectively.  Then by introducing a velocity potential 
cp  defined by' 

u = cpx,     v «* <py,     w = cpz (65) 

the  differential   equation  for     cp     of   an  isentropic   irrotational 
flow  can  be written  as   (reference   7) 

a     (cp       + <c       +cp)rs Yxx      Tyy      Tzz' 

^S«PX2C+ v%yy+ w%zz + 2vwq>3r!2+ 2wwpBX+ 2uvcpsy (66) 

If,   for   every  triad   of     u,     v,     w,      there   is   only  one   triad 
of     xt     y,      z,      then   the   Legendre   transformation  can  be 
used.      Thus 

X. =   ux +   vy +  ws — cp (67) 

and 

Xu =   x, Xv =  y, Xw B   z (68) 

The   differential   equation  for    «p,   equation   (66),   is   then 
transformed   into 

a3   jBC-23 + 0A- G-8 + AB- H =   u     (BO- O   +  v*   (0A- G   ) 
(69) 

+  w"   (AB- H*) + 2vw   (&E- AI) + 2wu  (HP- BG) + 2uv (EG-CH) 
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where the following notations are used 

A=X  ,  B = X  ,  0-X  .  2" = X_ uu1      vv'      ww* TW 
,  G=X  ,  H = X '     wu       uv 

(70) 

By analogy with the axially symmetric case, the limit- 
ing holograph surface is defined as the surface in the  u, 
v,  w  space, or hodo'graph space, where the following rela- 
tion holds» 

A = 

A H a 

H  B  I 

G  JP  0 

(71) 

The properties of this limiting hodograph and the correspond- 
ing limiting surface can be found by considering the behavior 
of streamlines and characteristics at such surfaces, 

Jrora equation (68) the differentials of  r,  y,  and  z 
can bo written as 

dx =» A du + H dv + G dw 

dy = H du + B dr + F dw 

dz = 5 du + F dv + 0 dw 

(73a) 

(72b) 

(72c) 

Along a streamline, the differentials  dx,  dy,  and  dz  must 
be proportional to  u,  v,  and  w,  respectively.  Thus the 
equation of a streamline in physical space is 

(dx). ± 
(d^V _ <*•>» 

u (73) 

where the subscript ^  indicates values taken along the 
streamline,  The equation of a streamline in hodograph space 
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is   obtained  by  eliminating     dx,      dy       and     dz     from  equation 
(73)   by   equation   (72).     Ehe   result   is 

<d*V (dvV (dw)M/ 
(74) 

au +  hv +  gw hu +  bv +   fw       gu +  fv +   cw 

where  a  is the_co—factor of A  in the determinant   A  of 
equation (71)t  b  the co-factor of  B,  and so forth.   Equa- 
tion (74) can be used, in turn, to eliminate two of the three 
differentials  du,  dv,  and  dw  in the right of equation 
(72).  Ehe result is 

/J \       uA du' ,__ N (dx)  «= — (75a) 
v   au + "Ev + g w 

.  x       vA dv 
(dy)  = = -— (75b) 

*  hu + bv + fw 

.  .       wA dw- 
<4«)^-= ~ (75c) 

*  gu + fv + cw 

At the limiting surface,  A = 0  as defined by equation (71)^ 
therefore the streamlines have a singularity there.  Similar 
to the axially symmetric flow, the streamlines generally are 
turned back and form a cusp at this surface.  Ehe accelera- 
tion and the pressura gradient are, of course, infinitely 
large at such places. 

Ehe characteristic surface  g(x,y,z) = 0  in physical 
space is determined by the equation 

[S* + Sy + Sz J - 

usgz
3+v2gy

8+w2gz
s+ 2vwgygz+ 2wug2gx+ 2uvg3:g3r (76) 
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Since this equation is a second—degree equation, there are 
two families of surfaces passing through each point.  These 
surfaces are the wave fronts of infinitesimal disturbances 
in the flow and can he called the Mach surfaces,  The char—, 
acteristic surface  f(u, vt w) = 0  in the hodograph space 
is determined by the equation 

aS r<B+C)fu
2+ (0+A)fT

2+ (A+B)fw
2- 2f f^- 2G fwfu- 213.  f^J 

Ö T      2        8 *T     2 f~      2 k       2 1 
* u   C fv +B fs - 31 fvfw  + v  I 0 fu + A fw - 2G fw fu J 

+ w  |B fu + A fr — 2H fufvl + 2vw  H fwfu+ G 
fu*v ' 

- ff   f   S- A  f     fl+   2wu  [E   f  f    + J f   f     -Q-fS-Bffl 
U V       W V   W U   V V w   u 

+   2uv   f& f   f     +   If   f     - H  f   3 -   0   f„f   1 (77) w  v wu w u     v x      ' 

By transforming equation (76) for Maoh surfaces to hodograph 
space, it can he shown that the transformed equation is 
satisfied either by the characteristics in hodograph space 
determined by equation (77) or by the limiting hodograph 
determined by equation (71)«  Therefore, here again the 
limiting'surface is the envelope of a family of Mach surfaces. 

By using equations (74) and (77), it is possible to show 
that the streamlines in the hodograph space are tangent to 
the characteristic surfaces at the limiting hodograph.  Fur- 
thermore, by using equations (69), (71), and (74), the in- 
clination of the streamlines at the limiting hodograph can 
be calculated.  In fact, if  (ds)s = (du)a+ (dv)3+ (dw)s, 
q3 = u3 + v2 +• ws,  the following relation is obtained 

C 
•ds\      q q 
—— »    ss _    or   — — d*4,i   a or  (78) 

This relation is really equivalent to equation (32).  In 
other words, at the limiting hodograph, the inclination of 
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the streamlines and characteristics to the  q. = constant 
surface is equal to the Mach angle (fig, 6),  It thus seems 
the "breakdown of general steady isentropic irrotational flow 
of nonviscous fluid is connected with the appearance of the 
envelope of Mach waves in physical space and the tangency of 
streamlines and characteristics in hodograph space. 

California Institute of Technology, 
Pasadena, Calif., August 24, 1943. 
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Figure 3.- Hodograph of the flow over a cone of 30° half vertex angle 

and a surface velocity q eoual to 0.350. 
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Figure 4.- Flow over cones of various vertex angles involving 
subsonic regions. es = half vertex angle, us «= 

velocity over the surface of cone. 
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